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|. INTRODUCTION

The Putna Qs andVarey are defined in a similar way. ) computation of the cutoff frequencies and propagation con-
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P The addition theorem of the Bessel functions is then used to relate the
dielectric waveguide fields and metallic waveguide fields as follows:

Qn(kcp)Fn(”@) = Z q)nJFm(kcpl)']m(kC‘A)‘F”JFm((rb/)’

m=—oco

forA > pf (4)

D (kep)Fa(nd) = > Duym(ked) T (kep’) Fugm(8'),

m=—c0

forA<p  (5)

forn =0, 1, 2, - -+, whereA is the displacement betweéhand’,
and®,, could either be the Bessel function of the first or second kind.
By matching the fields and their normal derivativespat= b,

Fig. 1. Geometry of the asymmetrically load cylindrical waveguide. Thand applying the orthogonality property of the Bessel functions, we
boundary of the metallic waveguide @, while the boundary of the dielectric gptzin the following set of equations:
rod is D.

apdy(Wkeb) = Ty (keb)Sby Jpen (ke A) + 8Yp (k) S Jpon (ko)

analyzed since it does not readily lend itself to the separation-of- ®)
variables scheme of solution. Thus, previous researchers have alwaiyd
resorted to circumvent this difficulty bBYORCINGthe fields to match NapJ],)(ykub) = J]’)(ktb)zbnjp_"(kcg) + 5Y}§(kcb)2anp-n(kL.A)

across the air—dielectric boundary. In this paper the author made use @
of the well-known addition theorem of the Bessel function [10] to
facilitate a rigorous field matching using the orthogonality propertipr p = 0, 1, 2, - -+, where
of the Bessel functions. 0. FASD
5= .
1, otherwise
II. THEORY {y, TM modes
. . L . . w=
Referring to Fig. 1, the electric field at a poift outside the 1/v, TE modes.

cylindrical wave_guide_generated by the e_quiva_lent sources on @Suations (6) and (7) form a set of homogeneous simultaneous
surface of the dielectric rod and the metallic cylinder must be zergquations. The solution to this set of equations is nonzero if and only

Therefore, from the null-field method, we have if the determinant of the coefficient matrix is equal to zero. Therefore,
. the cutoff frequency could be determined by simply performing a
f [Tp(Qp)Vy(P, Qp) —g(P, Qp)VIn(Qn)npy one-dimensional search with its upper and lower bounds given by
b ) the cutoff frequencies of an empty and a fully loaded waveguide,
° dC(Qp) + f [T (Qe)Vy(P, Qo) respectively. The solution is unique and no other minimization criteria
C were needed to ensure convergence.

— g(P, Qe)VT(Qc)]ne o dC(Qe) = 0 (1)
h q h field for th q . . RESULTS
\ /-

where Up and Vo are thek. fie .or.t e TM. mode at cuto or The rate of convergence of the solution is extremely fast. Table |
H. field for the TE mode at cutoff within the dielectric rod of radius . -

. ) ) . . . shows two examples where the residual error is smaller than 90 parts
b and the metallic guide of radius respectively.V is the gradient er million (ppm) (0.009%) for Case b (= 4.75 mm, A = 3.5
operator,g is the two-dimensional free-space Green’s functiQm P PP ' ? RN 18 =20

. . mm) using only three modes and 67 ppm for Casé H=(5.00 mm,
and@ ¢ are points on, and;, andn,. are units normal to, the surfaceA — 3.5 mm) using only four modes, respectively. The diameter of
of the dielectric rod D) and metallic guide), respectively. - g only ! P y:

The fields¥ » and¥¢ at cutoff can be expressed in terms of theiFhe cylindrical waveguide used is 19 mm and the dielectric constant

guided-wave modes as follows: of the dielectric rod IS 2.58. ‘ ‘ ‘ ‘
The cutoff frequencies for th&Mgy, TM;y, TE¢,, and TEy;

modes of a concentrically loaded cylindrical waveguide (i.e., for

the caseA = 0) were evaluated using this method for various

, values ofb/a. The results obtained were foundagree exactlywith

Vo =Y [baTulkep) + nYalkep)] Fu(6) exp j(wt)  (3) the theoretical values obtained using the method of separation of
" variables.

N . . Figs. 2 and 3 show the variation of the respective TM and TE
wherev = /=, (p, ¢, z) are the cylindrical coordinates with respect . . : -
- . o, modes cutoff frequencies versus displacem&pt for various sizes
to the center of the cylindrical waveguide, (o', ¢', z') are the

Lo . . . . of the dielectric rod ranging from 5 to 8 mm radius. The dielectric
cylindrical coordinates with respect to the center of the dielectric ro ; ) o S

g : g . constant used is 2.58 and the radius of the cylindrical waveguide is
O', an, b,, andc¢, are expansion coefficients, anl andY, are

. ; : . 9.5 mm. It is clear from Figs. 2 and 3 that whexy« approaches
Bessel functions of the first and second kind, respectively, zero, the cutoff frequencies approach the cuto?fn/frequencies of the
concentrically loaded waveguide. Again, & = 0, the cutoff
frequenciesagree exactlywith those obtained from the method of
’ separation of variables. It is interesting to note that asymmetrical
cn = { 0, ifA>D ] loading has a lesser effect on the cutoff frequencies of the TE modes
Cn, otherwise. than that of the TM modes. This could be attributed to the fact that the

Uy = Zan.]n (V]CC/)/)F,L(@’) exp j(wt) 2

n

cos(nag), even modes
sin(ng), odd modes

F.(6) :{
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TABLE | 8.0
CONVERGENCE OFNUMERICAL RESULTS @ = 9.5 mm, &, = 2.58,
A =35mm. Csel: b=4.75 mm, Case ll: b = 5.00 mm -
7.8
# of modes used Frequency (GHz) <
I
o b:
> 76 =
Casel 2 —85— 50mm
3
8 T —4— 6.0mm
1 8.682589118 w 74
2 8.768228663 g 147 —&— 4.75mm
3 8.767415418 5 ]
4 8.767440216 ©
5 8.767440965 72
6 8.767440985 '
7 8.767440983 B
7.0 T T T T T T T T T

Case Il 0.0 0.1 0.2 0.3 0.4 0.5

1 8.810694932 Fig. 3. TE mode cutoff frequencies of an asymmetrically loaded cylindrical
2 8.593465517 waveguidea« = 9.5 mm ande, = 2.58.
3 8.668228657
4 8.667644419
5 8.667661952 TABLE 1l
6 8.667662263 CoMPARISON BETWEEN MEASURED AND PREDICTED RESONANT FREQUENCIES OF
7 8 667662251 A LoADED CYLINDRICAL CAVITY a = 9.5 mm, b = 4.75 mm, &, = 2.006
8 8.667662249
Offset from centre Cutoff frequency | Cutoff frequency Error
Aa (measured GHz) |(computed GHz) %
9.0
0.00 9.187 9.198 0.12
0.10 9.066 9.235 1.83
— b: 0.20 9.169 9.330 1.73
N
I
Q —8— 50mm 0.30 9.417 9.528 1.16
>
= $— 6.0mm 0.40 9.661 9.794 1.36
g 80 —m—  4.75mm
2 0.50 9,902 10.072 1.68
- —&—  7.0mm
o
b= —&— 8.0mm
O
error). The measurement error can be attributed to many sources,
mainly the loading effect of the coupling holes, error in placing the
Teflon rod at the exact positions, and error in measuring the dielectric
constant of Teflon. The error is also higher at a smaller valug 6f
7.0 T T T T T T T T T T

and whenA /a approaches 0.5 (when the Teflon rod is touching the
cavity wall). For the former, the error in positioning the Teflon rod
is likely to be the cause. On the other hand, the concentration of
Fig. 2. TM mode cutoff frequencies of an asymmetrically loaded cylindricdhe electric field adjacent to the cavity wall (and, hence, coupling
waveguidea = 9.5 mm ande,. = 2.58. holes) is likely to increase the loading effect and, hence, raise the
measurement error for the latter.

0.0 0.1 02 03 0.4 0.5

boundary conditions for the TM modes require the tangential electric
field (E.) to be zero ap = «, while the boundary conditions for the IV. CONCLUSION

TE modes require onlpH./On =0 atp = a. In this paper, we have introduced an ingenious method of matching
A metallic cylindrical cavity of 19-mm diameter and 5-mm heighthe fields across the air—dielectric boundary in an asymmetrically
was fabricated. A Teflon rod of 2.006 dielectric constant, 5-mmaded cylindrical waveguide. The use of the addition theorem of the
lengths, and 9.5-mm diameter was also fabricated and inser®@essel functions eliminated the needs to force—match the fields either
into the cylindrical cavity at various displacement positions. Thiey point-matching or by least square boundary residual (LSBR),
measured resonant frequencies comparing with the computed resthiégseby improving the overall numerical accuracy and efficiency. It
are tabulated in Table Il. It is observed that the difference is wafl clear from (6) and (7) that the matching of both the fields and their
within 2% and is lowest for the case of symmetrical loading (0.12%erivatives also ensure a smoother transition across the air—dielectric
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boundary. Examples given in Table | clearly show the efficiency of
this method, with the residual error smaller than 100 ppm (0.01%), 4, %;, »
using only three to four modes in each region of the waveguide.  Hi415+1 SMD
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II. FORMULATION
3-D FEM/BEM—Hybrid Modeling of Surface The model of the considered field problem is shown in Fig. 1.
Mounted Devices Within Planar Circuits All disturbances of the multilayered structure are enclosed by a
Huygens’ surface. On the Huygens' surface, electric and magnetic
T. F. Eibert and V. Hansen surface-current densities are introduced according to
Ja(?) = #(7) x H(P) Ma(F) = —i(7) x E(7). (1)

Abstract— Three—dimensional (3-D) finite-element (FE) meshes of Thjg means that on metallizations, only electric surface-current den-
surface-mounted devices (SMD’s) are combined with the surface-current

models of planar circuits in multilayered media. This is accomplished on sities are present. Further, the electric surface-current densiti(_es qn the
the basis of Huygens’ principle via the introduction of equivalent electric lower and upper parts of the Huygens’ surface at the metallizations
and magnetic surface-current densities on a surface enclosing the 3-D can be added for metallizations with vanishing thickness and be

parts of the SMD's. The fields in the layered media are described by a nterpreted as the physical electric surface-current density within the
surface integral equation based on the dyadic Green’s function of the P

) - A . metallization.
layered media. Special attention is directed to a proper interface of the . , -, - .
surface and 3-D parts of the models. Numerical results for a homogeneous 1 Ne fields of the Huygens’ current densities within the multilayered

and a multilayered capacitor in a microstrip circuit are presented. medium are described with a surface integral representation, whereas
. - . ' the fields in the SMD are modeled by the FEM. The connection
Index Terms—Capacitors, finite-element methods, integral equations, . . : .
nonhomogeneous media. between the two different field formulations are given by the bound-

ary conditions for the tangential-field components on the Huygens’
surface. Further details of the basic formulation of the method can
be found in [2] and [3].
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