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APPENDIX

The parameters appearing in (5) are
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The (m;n)th element ofP (M�1)� (P(M�1)�;mn), the (m;n)th

element of Q(M�1)� (Q(M�1)�;mn), and the mth element of
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(7)

TheP (M+1)�, Q(M+1)�, andV M+1 are defined in a similar way.

~�� ( ~��) is the vector consists of[~��1; ~��2; � � �] ([ ~��1; ~��2; � � �]).
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Cutoff Frequencies of an Asymmetrically
Loaded Cylindrical Waveguide

Tat Soon Yeo

Abstract—The cutoff characteristics of an asymmetrically loaded cylin-
drical waveguide are analyzed using the null-field method. The fields
in the metallic waveguide and dielectric loading are expressed in their
corresponding guided-wave modes. The addition theorem of the Bessel
function is used to relate the fields across the air–dielectric boundary.

Index Terms—Asymmetric loading, cylindrical waveguide.

I. INTRODUCTION

The computation of the cutoff frequencies and propagation con-
stants of a cylindrical waveguide asymmetrically loaded with a
dielectric cylinder has been the subject of much investigations [1],
[2]. These research efforts have previously been pioneered by antenna
designers interested in synthesizing specific aperture field across a
cylindrical radiator; hence, leading to a specific radiation pattern.
Lately, the hybrid microwave-integrated-circuit designers interested
in accurately modeling the dielectric resonator enclosed within a
metallic box are also seriously looking into this problem.

The reported work are often based on the concept of field matching
across the air–dielectric boundary. Rothwellet al. [1] have used the
simple point-matching method, while Yeo [2] has used the method
of the least-squares boundary residual. While the legitimacy of the
former method has often been called into question [3], the latter is a
minimization procedure that has not been shown to be able to lead
to a guaranteed global minimum.

On the other hand, the convergence and uniqueness of the null-
field method [4] have been well proven [5]–[8]. In 1982, Martin [8]
stated categorically that, “we prove that the infinite system of null-
field equations always has precisely one solution.” In this paper, the
null-field method is used to compute the cutoff frequencies of the
asymmetrically loaded cylindrical waveguide for both the transverse-
electric and transverse-magnetic modes.

As correctly pointed out by Kuttler [9], the cross-sectional geom-
etry of a asymmetrically loaded cylindrical waveguide is not easily
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Fig. 1. Geometry of the asymmetrically load cylindrical waveguide. The
boundary of the metallic waveguide isC, while the boundary of the dielectric
rod is D.

analyzed since it does not readily lend itself to the separation-of-
variables scheme of solution. Thus, previous researchers have always
resorted to circumvent this difficulty byFORCINGthe fields to match
across the air–dielectric boundary. In this paper the author made use
of the well-known addition theorem of the Bessel function [10] to
facilitate a rigorous field matching using the orthogonality property
of the Bessel functions.

II. THEORY

Referring to Fig. 1, the electric field at a pointP outside the
cylindrical waveguide generated by the equivalent sources on the
surface of the dielectric rod and the metallic cylinder must be zero.
Therefore, from the null-field method, we have

D

[	D(QD)rg(P; QD)� g(P; QD)r	D(QD)]nD

� dC(QD) +
C

[	C(QC)rg(P; QC)

� g(P; QC)r	C(QC)]nC � dC(QC) = 0 (1)

where	D and	C are theEz field for the TM mode at cutoff or
Hz field for the TE mode at cutoff within the dielectric rod of radius
b and the metallic guide of radiusa, respectively.r is the gradient
operator,g is the two-dimensional free-space Green’s function,QD

andQC are points on, andnD andnC are units normal to, the surface
of the dielectric rod (D) and metallic guide (C), respectively.

The fields	D and	C at cutoff can be expressed in terms of their
guided-wave modes as follows:

	D =
n

anJn(�kc�
0)Fn(�

0) exp j(!t) (2)

	C =
n

[bnJn(kc�) + cnYn(kc�)]Fn(�) exp j(!t) (3)

where� =
p
"r, (�, �, z) are the cylindrical coordinates with respect

to the center of the cylindrical waveguideO, (�0, �0, z0) are the
cylindrical coordinates with respect to the center of the dielectric rod
O0, an, bn, and cn are expansion coefficients, andJn and Yn are
Bessel functions of the first and second kind, respectively,

Fn(�) =
cos(n�); even modes
sin(n�); odd modes

cn =
0; if � > b
Cn; otherwise.

The addition theorem of the Bessel functions is then used to relate the
dielectric waveguide fields and metallic waveguide fields as follows:

�n(kc�)Fn(n�) =

1

m=�1

�n+m(kc�
0)Jm(kc�)Fn+m(�

0);

for� > �0 (4)

�n(kc�)Fn(n�) =

1
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0);

for� < �0 (5)

for n = 0; 1; 2; � � �, where� is the displacement betweenO andO0,
and�n could either be the Bessel function of the first or second kind.

By matching the fields and their normal derivatives at�0 = b,
and applying the orthogonality property of the Bessel functions, we
obtain the following set of equations:

apJp(�kcb) = Jp(kcb)�bnJp-n(kc�)+ �Yp(kcb)�cnJp-n(kc�)

(6)

and

�apJ
0

p(�kcb) = J 0p(kcb)�bnJp-n(kc�)+ �Y 0p(kcb)�cnJp-n(kc�)

(7)

for p = 0; 1; 2; � � � ; where

� =
0; if � > b
1; otherwise

� =
�; TM modes
1=�; TE modes.

Equations (6) and (7) form a set of homogeneous simultaneous
equations. The solution to this set of equations is nonzero if and only
if the determinant of the coefficient matrix is equal to zero. Therefore,
the cutoff frequency could be determined by simply performing a
one-dimensional search with its upper and lower bounds given by
the cutoff frequencies of an empty and a fully loaded waveguide,
respectively. The solution is unique and no other minimization criteria
were needed to ensure convergence.

III. RESULTS

The rate of convergence of the solution is extremely fast. Table I
shows two examples where the residual error is smaller than 90 parts
per million (ppm) (0.009%) for Case I (b = 4:75 mm, � = 3:5
mm) using only three modes and 67 ppm for Case II (b = 5:00 mm,
� = 3:5 mm) using only four modes, respectively. The diameter of
the cylindrical waveguide used is 19 mm and the dielectric constant
of the dielectric rod is 2.58.

The cutoff frequencies for theTM01, TM11, TE11, andTE21
modes of a concentrically loaded cylindrical waveguide (i.e., for
the case� = 0) were evaluated using this method for various
values ofb=a. The results obtained were found toagree exactlywith
the theoretical values obtained using the method of separation of
variables.

Figs. 2 and 3 show the variation of the respective TM and TE
modes cutoff frequencies versus displacement�=a for various sizes
of the dielectric rod ranging from 5 to 8 mm radius. The dielectric
constant used is 2.58 and the radius of the cylindrical waveguide is
9.5 mm. It is clear from Figs. 2 and 3 that when�=a approaches
zero, the cutoff frequencies approach the cutoff frequencies of the
concentrically loaded waveguide. Again, at� = 0, the cutoff
frequenciesagree exactlywith those obtained from the method of
separation of variables. It is interesting to note that asymmetrical
loading has a lesser effect on the cutoff frequencies of the TE modes
than that of the TM modes. This could be attributed to the fact that the
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TABLE I
CONVERGENCE OFNUMERICAL RESULTS a = 9:5 mm, "r = 2:58,
� = 3:5 mm. CASE I: b = 4:75 mm, CASE II: b = 5:00 mm

Fig. 2. TM mode cutoff frequencies of an asymmetrically loaded cylindrical
waveguidea = 9:5 mm and"r = 2:58.

boundary conditions for the TM modes require the tangential electric
field (Ez) to be zero at� = a, while the boundary conditions for the
TE modes require only@Hz=@n = 0 at � = a.

A metallic cylindrical cavity of 19-mm diameter and 5-mm height
was fabricated. A Teflon rod of 2.006 dielectric constant, 5-mm
lengths, and 9.5-mm diameter was also fabricated and inserted
into the cylindrical cavity at various displacement positions. The
measured resonant frequencies comparing with the computed results
are tabulated in Table II. It is observed that the difference is well
within 2% and is lowest for the case of symmetrical loading (0.12%

Fig. 3. TE mode cutoff frequencies of an asymmetrically loaded cylindrical
waveguidea = 9:5 mm and"r = 2:58.

TABLE II
COMPARISON BETWEEN MEASURED AND PREDICTED RESONANT FREQUENCIES OF

A LOADED CYLINDRICAL CAVITY a = 9:5 mm, b = 4:75 mm, "r = 2:006

error). The measurement error can be attributed to many sources,
mainly the loading effect of the coupling holes, error in placing the
Teflon rod at the exact positions, and error in measuring the dielectric
constant of Teflon. The error is also higher at a smaller value of�=a
and when�=a approaches 0.5 (when the Teflon rod is touching the
cavity wall). For the former, the error in positioning the Teflon rod
is likely to be the cause. On the other hand, the concentration of
the electric field adjacent to the cavity wall (and, hence, coupling
holes) is likely to increase the loading effect and, hence, raise the
measurement error for the latter.

IV. CONCLUSION

In this paper, we have introduced an ingenious method of matching
the fields across the air–dielectric boundary in an asymmetrically
loaded cylindrical waveguide. The use of the addition theorem of the
Bessel functions eliminated the needs to force–match the fields either
by point-matching or by least square boundary residual (LSBR),
thereby improving the overall numerical accuracy and efficiency. It
is clear from (6) and (7) that the matching of both the fields and their
derivatives also ensure a smoother transition across the air–dielectric
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boundary. Examples given in Table I clearly show the efficiency of
this method, with the residual error smaller than 100 ppm (0.01%),
using only three to four modes in each region of the waveguide.
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3-D FEM/BEM—Hybrid Modeling of Surface
Mounted Devices Within Planar Circuits

T. F. Eibert and V. Hansen

Abstract— Three–dimensional (3-D) finite-element (FE) meshes of
surface-mounted devices (SMD’s) are combined with the surface-current
models of planar circuits in multilayered media. This is accomplished on
the basis of Huygens’ principle via the introduction of equivalent electric
and magnetic surface-current densities on a surface enclosing the 3-D
parts of the SMD’s. The fields in the layered media are described by a
surface integral equation based on the dyadic Green’s function of the
layered media. Special attention is directed to a proper interface of the
surface and 3-D parts of the models. Numerical results for a homogeneous
and a multilayered capacitor in a microstrip circuit are presented.

Index Terms—Capacitors, finite-element methods, integral equations,
nonhomogeneous media.
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Fig. 1. Model of the field problem.

I. INTRODUCTION

Numerical modeling of circuits within multilayered media based
on the analytic Green’s-function description of the layered structure is
usually restricted to the modeling of planar circuits or so-called two-
and-one-half dimensional (2.5-D) circuits [1]. In [2] and [3], a hybrid
method was presented, which combines the finite-element method
(FEM) for the modeling of three-dimensional (3-D) inhomogeneities
with a boundary-element method (BEM) for multilayered media. The
investigated field problems where restricted to configurations where
the 3-D finite-element (FE) models and surface-current models for
metallic structures had no direct connection between each other.
In this paper, it is illustrated how this method can be applied to
modeling of surface-mounted devices (SMD’s) within their planar-
circuit environment. For this purpose, a connection between the
surface-current models of the metallic parts of the circuits and the
3-D FE models of the SMD’s is introduced. Numerical results for
a homogeneous SMD capacitor and a multilayered SMD capacitor
are shown.

II. FORMULATION

The model of the considered field problem is shown in Fig. 1.
All disturbances of the multilayered structure are enclosed by a
Huygens’ surface. On the Huygens’ surface, electric and magnetic
surface-current densities are introduced according to

~JA(~r) = ~n(~r)� ~H(~r) ~MA(~r) = �~n(~r)� ~E(~r): (1)

This means that on metallizations, only electric surface-current den-
sities are present. Further, the electric surface-current densities on the
lower and upper parts of the Huygens’ surface at the metallizations
can be added for metallizations with vanishing thickness and be
interpreted as the physical electric surface-current density within the
metallization.

The fields of the Huygens’ current densities within the multilayered
medium are described with a surface integral representation, whereas
the fields in the SMD are modeled by the FEM. The connection
between the two different field formulations are given by the bound-
ary conditions for the tangential-field components on the Huygens’
surface. Further details of the basic formulation of the method can
be found in [2] and [3].

For the discretization of the model, care must be taken so that
Kirchhoff’s current-continuity formula is satisfied at the junctions
between the metallizations and SMD. In typical edge-based dis-
cretization meshes, this is a problem because only one edge is
generated at the junctions where three triangles meet. That is, only
one independent current will be present at the junction if one unknown

0018–9480/98$10.00 1998 IEEE


